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Abstract--Reaction of [(tBu)2Ga(/~-C1)]2 with Li(o-C6H4NMe2) yields [(~Bu)zGa(o-C6H4NMe2]2 (1). The atmo- 
i i , , 

spheric oxidation/hydrolysis of 1 results in the isolation of (~Bu)2Ga(o-C6H4NMe:)(#-OH)Ga(Bu)[o-CrH4N(O) 
Me2] (2). The structure of compound 2 (as determined by X-ray crystallography) consists of a gallium 
dimer in which one of the ortho-(dimethylamino)phenyl ligands is oxidized and the other exhibits strong 
intramolecular O - - H . . .  N hydrogen bonding (AG * = 57.3 kJ mol -~) to the hydroxide bridge. A pathway for 
the formation of 2 is proposed. Reaction of compound 1 with ~ P P h 3  results in the formation of the 
Lewis acid-base complex (tBu)2Ga(o-C6H4NMe2)(~PPh3) (3), whose structure has been confirmed by X-ray 
crystallography. © 1997 Elsevier Science Ltd 
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Over the past ten years there has been an increasing 
number of reports of compounds of the Group 13 
metals containing bidentate potentially chelating 
ligands [1]. Potential applications proposed in the 
literature include : chiral reagents in organic synthesis 
[2], MOCVD precursors [3], and model compounds 
for the intermediate stage of an SN2-1ike process [4]. 
Our interest in this class of compound is in their use 
as models for the alkylalumoxane latent Lewis acid 
catalysts [5]. During our investigations we observed 
that one of these compounds, [(tBu)2Ga(o-C6H4 
NMe2)]2, repeatedly underwent a clean decomposition 
in the presence of humid air to give a single isolable 
species. Given our previous studies concerning the 
oxidation and hydrolysis of Group 13 compounds we 

t Dedicated to the memory of Sir Geoffrey Wilkinson for 
his contributions to inorganic chemistry. 

* Authors to whom correspondence should be addressed. 

have undertaken an investigation of this decomposi- 
tion product [6-8]. 

RESULTS AND DISCUSSION 

Reaction of ortho-(dimethylamino)phenyl lithium 
with [(tBu)2Ga(#-C1)]2 [9], in hexane, yields [ ( tBu )2  

Ga(o-C6H4NMe2)]2 (1), whose structure based upon 
mass spectrometry and literature precedent [10], is a 
dimer. Full spectroscopic characterization of com- 
pound 1 is given in the Experimental section. 

Compound 1 is air and moisture sensitive and 
decomposes readily in hexane solution upon exposure 

t I 1 
to humid air to give (Bu)2Ga(o-CrH4NMe2)(/~-OH) 
(~a(tBu) [o-CrH4N(O)Me2] (2). Compound 2 has been 
characterized by NMR and IR spectroscopy, mass 
spectrometry, and X-ray crystallography. 

The molecular structure of (tBu)2Ga(o-C6H4 
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NMe2)(p-OH)Ga(Bu)[o-C6H4N(O)Me2] 2 is shown 
in Fig. 1 : selected bond lengths and angles are given 
in Table 1. The structure consists of an asymmetric di- 
gallium dimer in which the two 4-coordinate gallium 
centers are bridged by a single hydroxide bridge, see 
below. The coordination environment of Ga(1) is 
completed by one tert-butyl ligand and a chelating 
ortho-(dimethylamino-N-oxide)phenyl ligand. In 
contrast, Ga(2) coordination environment includes 
two tert-butyl ligands and an ortho-(dimethyl- 

C. N. McMahon et al. 

amino)phenyl ligand. It should be noted that the 
ortho-(dimethylamino-N-oxide)phenyl ligand is iso- 
lobal with the ortho-(dimethylamino)methylphenyl 
ligand, which has been demonstrated to chelate to 
gallium [10]. 

The unoxidized ortho-(dimethylamino)phenyl 
ligand is positioned coplanar with the G a ( l ) - -  
O(1)--Ga(2)  plane and the O(1).. .N(27) distance 
(2.80 A) is within the range suitable for a hydrogen 
bonding interaction [11]. The hydroxide hydrogen 
was located in the electron difference map, and the 
IR spectrum contains a broad band at 3400 cm -] 
characteristic of a hydrogen bonded O - - H  group. 
Both these experimental measurements, and the low 
acidities previously observed for gallium hydroxides 
[12] are consistent with the O---H- • .N representation. 
However, it is worth noting that since the 
Ga(1)--O(1) bond distance [1.868(8) A] is shorter 
than would be expected for a gallium hydroxide (ca 
2.00 A) but similar to that observed for gallium oxide 
(1.87-1.89 A.) [13], some component of the Zwitter 
ionic O -  . . .  H - - N  + form should be considered. 

The retention of the O - - H '  .. N hydrogen bond at 
room temperature in solution is confirmed from the 
'H NMR spectrum (see Experimental), which indi- 
cates that each of the tert-butyl groups on Ga(2) and 
the methyl groups on N(7) are magnetically inequi- 
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Fig. 1. The molecular structure of ('Bu)zGa(o-C6H4NMe2)(/t-OH)Ga(tBu)[o-C6H4N(O)Me2] (2). Thermal ellipsoids are 
shown at the 30% level and organic hydrogen atoms are omitted for clarity. 
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Table 1. Selected bond lengths (A) and angles (°) for (tBu)zGa(o-C6H41~Me~)(#-OI~I) 

Ga('Bu) [o-C6H4N(O)Mez] (2) 

Ga(1)--O(1) 1.868(8) Ga(1)--O(8) 1.919(8) 
Ga(I)--C(I) 1.97(1) Ga(1)--C(11) 2.00(2) 
Ga(2)--O(1 ) 1.977 (7) Ga (2)--C (21 ) 2.01 (1) 
Ga(2)--C(31) 2.01(1) Ga(2)--C(41) 2.03(I) 
O(8)--N(7) 1.38(1) 

O(1)--Ga(1)--O(8) 105.9(4) O(l)--Ga(1)--C(1) 108.4(4) 
O(1)--Ga(1)--C(11) 118,7(4) O(8)--Ga(1)--C(l) 85.5(4) 
O(8)--Ga(1)--C(1 l) 110,2(5) C(1)--Ga(l)--C(11) 121.9(6) 
O(1)--Ga(2)--C(21) 1012(4) O(l)--Ga(2)--C(31) 104.9(4) 
O(1)~a(2)--C(41) 106.1 (5) C(2 l)--Ga(2)--C(31) 112.4(6) 
C(2 l)--Ga(2)--C(41) 107,8(5) C(31)--Ga(2)--C(41) 121.5(5) 
Ga(1)--O(l)--Ga(2) 153.6(4) Ga(I)--O(8)--N(7) 115.6(6) 
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valent. Upon warming the resonances for the tert- 
butyl ligands coalesce (To = 32°C), indicating free 
rotation about Ga(2)--O(1).  The AG ~ for breaking 
the intramolecular hydrogen bond is thus calculated, 
by the method of Shanan-Atidi and Bar-Eli [14] to be 
57.3 kJ mol-'. 

The observation that hydrolysis of compound 1 
results in the formation of [(tBu)2Ga(/~-OH)]3 and 
dimethylanaline (see Experimental) indicates that 
during the formation of compound 2, oxidation must 
precede hydrolysis. Based upon literature precedent, 
and the scoping reactions described below, we propose 

that compound 2 is formed via the following reaction 
sequence outlined in Scheme 1 : (1) auto-oxidation of 
one of the tert-butyl ligands to give a tert-butyl- 
peroxide ligand. (2) Intramolecular oxidation of the 
ortho-(N,N-dimethylamino)phenyl ligand and the 
concurrent formation of an alkoxide ligand. (3) 
Hydrolysis of the tert-butoxide ligand to a hydroxide. 

Supporting evidence for this proposal includes the 
following: (1) Oxidation of Ga('Bu)3 yields the alkyl- 
peroxide compound, [(tBu)2Ga(lt-OOtBu)]2 [7]. (2) 
Dimeric [(tBu)2Ga(o-C6H4NMe2)]2 (1) is cleaved by 
oxygen donor ligands such as O=PPh3 to give (tBu)2 

~ e 

t B u ~ a  L ..,,,gBu +02 

~ ~  "MCM 

+ H20 

- HOtBu 

1 
\7 

Scheme 1. Proposed reaction pathway for the formation of (tBu)zGa(o-C6H4NMe2)Oz-OH)Ga(tBu)[o-C6H4N(O)Me2] (2) 
from [('Bu)2Ga(o-C6H4NMe2)]2 (1). 
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Ga(o-C6HnNMe2)(~PPh3) (3), whose structure has 
been confirmed by X-ray crystallography, see below. 
(3) [(tBu)2Ga(/~-OOtBu)]2 readily oxidizes phosphines 
to give a coordinated phosphine oxide and an alkox- 
ide, i.e., [(tBu)2Ga(OtBu)(~PR3) [8]. (4) Hydrolysis 
of [(Bu)2Ga(/l-OtBu)]2 yields [(~Bu)2Ga(#-OH)]~ and 
tBuOH [15]. 

It is interesting to note that while [(tBu)2Ga(#- 
OOtBu)]2 oxidizes phosphines to give (tBu)2Ga 
(OtBu)(O=PR3) [8], we were unable to observe a 
similar reaction for the oxidation of dimethylanaline. 
Perhaps this is not surprising since N,N-dimethyl- 
analine (and other tertiary amines, NR3) are only 
readily oxidized with strong oxidizing reagents, such 
as hydrogen peroxide [16]  and Caro's acid 
(H2SO4/H2SOs/H20) [17]. Thus, the formation of 
compound 2 would therefore suggest that intra-molec- 
ular oxidation reactions of gallium alkylperoxides are 
more facile than their inter-molecular counterparts. 
This is consistent with the report that the rate of 
oxidation of dimethylanaline by Caro's acid [18] is 
proportional to the concentration of both reagents. 
Since the local concentration of the peroxide is max- 
imized in an intra-molecular reaction the rate is also 
increased. 

The molecular structure of (tBu)2Ga(o-C6H4N- 
Me2) (~PPh3)  (3) is shown in Fig. 2 : selected bond 
lengths and angles are given in Table 2. The large 
Ga(1) • • • N(1) distance (3.25 A_) clearly precludes any 
G a - - N  bond from the ortho-dimethylamino phenyl 
ligand. The P - -O  bond in 3 [1.494(3) /~] is within 
experimental error of that in uncoordinated ~ P P h 3  
[1.483(2) [19], and within the range of distances 
reported for phosphorylic complexes (1.49-1.52 A) 
[20]. The P - -O  distance is therefore consistent with 
the mode of phosphine oxide coordination described 
as depicted in I, without significant contribution of 
the resonance from II. The Ga(1)--O(1)--P(1) angle 
in compound 3 [161.7(2) °] is smaller than that 
observed in CI3Ga(O=PPhs) (180 °) [21], but com- 
parable to that reported for (Ph3P=O)[A10~2(SiPh)7] 
[160.0(4) ° ] [22]. 

I I 

oo 

EXPERIMENTAL 

All operations were carried out using Schlenk tech- 
niques or in an argon atmospheric VAC glovebox. The 
synthesis of [(tBu)2Ga(/~-Cl)]2, [('Bu)2Ga(#-OO'Bu)2, 
and [(tBu)2Ga(/l-OtBu)]2 are reported elsewhere [7,9], 
~H and 13C NMR analysis was carried out on a Bruker 
WM-250 MHz spectrometer. Mass spectra analysis 
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was obtained on a Finnegan MAT95 mass spec- 
trometer with an electron beam energy of 70 eV for 
EI mass spectra. IR analysis was carried out on a 
Perkin Elmer 1600 Series FT-IR spectrometer using 
Nujol mulls. 

[('Bu)2Ga(o-C6H4NMe2)] 2 (1) 

To a hexane solution (20 cm -3) of [(tBu)2Ga(/~- 
Cl)] 2 (0.5 g, 1.1 mmol) was added a hexane solution 
(20 cm 3) of Li(o-C6H4NM%) (0.29 g, 2.3 mmol) at 
room temperature. The reaction was stirred for 16 h 
and the LiC1 precipitate removed by filtration. The 
solvent was removed in vacuo resulting in a colorless 
oil. Yield : ca 40%. MS (%) : m/z 608 (2M +, 10), 520 
(2M +-2NMe2,  4), 246 (M +- tBu,  100), 120 
(C6H4NMe2, 50). IR (cm-1) : 3051 (m), 2953 (s), 2833 
(s), 1601 (m), 1565 (m), 1507 (m), 1465 (s), 1359 (m), 
1259 (s), 1106 (m), 1022 (s), 933 (s), 809 (s), 772 (s) 
558 (w). ~H NMR (C6D6) : 6.61-7.51 (8H, m, C6H4), 
2.34 [12H, s,N(CH3)2], 1.26 [36H, s,C(CH3)3]. '3C 
NMR (C6D6): 159.57 (Ga--C, C6H4), 136.7, 129.6, 
128.5, 117.4, 117.2 (C6H4), 49.2 [N(CH3)2], 31.8 
[c(cu,)~]. 

r I , , 

(tBu)2Ga(o - C6H4NMe2)]2(/z - OH)(Ga(Bu)[o - C6H4N(O) 
Me2] (2) 

A hexane (20 cm 3) solution of [(tBu)2Ga(o-C6H4 
NMe2)]2 (0.2 g, 0.3 mmol) was exposed to humid air. 
Colorless crystals were then grown upon cooling to 
-16°C. Yield: ca 25%. M.p: 132-135°C. MS (%): 
m/z 278 [Ga(O)(tBu){o-C6H4N(O)Me2}40], 262 
[GaCBu) {o-C6H4N(O)Me2}, 30], 246 [Ga('Bu) 
(o-C6H,NMe2),10), 2O5 [Ga{o-C6H4N(O)Me2},25], 
189 [Ga)o-C6H4NMe2), 10], ~H NMR (C6D6) : 6.13- 
7.88 (8H, m, C6H4), 2.69 [3H, br, s, ON(CH3)2], 2.58 
[6H, s,N(CH3)2], 2.34 [3H, br, s, ON(CH3)2], 1.59 
[9H, br, s,C(CH3)3], 1 .37  [9H, s,C(CH3)3], 1.17 
[9H, br, s,C(CH3)3]. ~3C NMR ( C 6 D 0 : 1 5 6 . 7 7  
(Ga--C, C6H4), 160.55 (Ga--C, C6H4), 139.1, 137.7, 
129.7, 127.2, 125.6, 119.9, 116.5, (C6H4), 61.4 
[ON(CH3)2], 61.1 [ON(CH3)2], 47.8 [N(CH3)2], 32.6 
[C(CH3)3], 31.2 [C(CHa)3]. 

Hydrolysis of  [(tBu)zGa(o-C6H,NMe2)]2 

To a hexane solution (20 cm 3) of [('Bu)2Ga(o- 
C6H4NMe2)]2 (0.35 g, 0.58 mmol) was added H20 (0.1 
cm3). The reaction was stirred overnight, after which 
time colorless crystals of [CBu)2Ga(/~-OH)]3 
deposited. The IH NMR, IR, and MS were identical 
to those of a genuine sample [7]. 

(tBu)2~a(o-C6H4NM%) ( ~ P P h 3 )  (3) 

To a toluene solution (20 cm 3) of [(tBu)2Ga(o- 
C6H4NMe2)]2 (0.10 g, 0.15 mmol) was added a toluene 
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Fig. 2. The t molecular structure of (Bu)2Ga(o-C6HaNMea)(~PPh3) (3). Thermal ellipsoids are shown at the 30% level and 
hydrogen atoms are omitted for clarity. 

Table 2. Selected bond lengths (A) and angles (°) for 
(tBu) :Ga(o-C6H4NMe=) (~PPh3)  (3) 

Ga(1)--O(1) 2 . 0 9 1 ( 3 )  Ga(1)--C(1) 2.029(5) 
Ga(1)--C(11) 2 . 0 2 0 ( 4 )  Ga(1)--C(21) 2.033(6) 
P(1)--O(1) 1.494(3) 

O(1)---Ga(1)--C(1) 97.8(2) O(1)--Ga(1)--C(1 l) 100.6(2) 
O(1)--Ga(1)--C(21) 96 .0(2)  C(1)--Ga(1)--C(11) 117.9(2) 
C(1)--Ga(1)--C(21) 115.9(2) C(l 1)--Ga(2)--C(21) 120.3(2) 
Ga(1)--O(l)--P(1) 161.7(2) 

solution (20 cm 3) of O~PPh3 (0.09 g, 0.32 mmol) at 
room temperature. The reaction was stirred overnight, 
and the resulting solution was filtered, concentrated 
and cooled ( -  16°C) to give colorless crystals. Yield : 
34%. M.p.: 159-163°C. MS (%): m/z 525 
(M+--tBu, 35), 480 (M+--tBu--NMe2,36), 346 
[Ga(~PPh3) ,100] ,  328 [(tBu)Ga(O--PPh2),60], 
308 [Ga(tBu)2(~PPh),91] ,  278 ( ~ P P H 3 ,  100), 
247 [('Bu)Ga(o-C6H4NMe2)], 100), 203 [Ga(o- 
C6H4NMe2), 100), IR (cm -~) : 1591(w), 1570(w), 
1558(w), l160(m), ll18(m), 1091(m), 813(m), 
772(m), 746(s), 722(s), 694(s), 537(s), 453(m). ~H 
NMR (CDC13): 6.99--7.65 (19H, m, C6H4,PPh3), 
2.75 [6H, s,N(CH3)2], 0.98 [18H, s,C(fna)3]. 13C 
NMR (C6D6): 161.0 (Ga--C,  C6H4), 152.5, 138.2, 
126.1, 126.0 (C6H4)  , 132.8 [ J ( P - - C ) =  106.5 Hz, 

P--C], 133.0 [ d , J ( C - - P ) = 9 . 9  Hz, o-CH]. 132.4 
[d , J ( f - -P )  =2 .2  Hz,p-CH], 128.9 [ d , J ( f - - P ) =  
12.3 Hz, m-CH], 48.7 [N(CH3)2], 32.4 [C(CH3)3]. 3~p 
NMR (C6D6) : 25.4. 

Crystallographic studies 

Crystals of compounds 2 and 3 were sealed in a 
glass capillary under argon and mounted on the goni- 
ometer of a Enraf-Nonius CAD-4 automated 
diffractometer. Data collection and cell deter- 
minations were performed in a manner previously 
described [23], using the 0/20 scan technique. Per- 
tinent details are given in Table 3. The structures 
were solved by direct methods (SHELX86) [24]. The 



3412 C. N. McMahon et al. 

Table 3. Summary of X-ray diffraction data 

Compound 2 3 
Empirical form C28H~Ga2N202 C34H43GaNOP 
Crystal size (mm) 0.11 × 0.13 x 0.41 0.12 × 0.14 x 0.42 
Crystal system triclinic triclinic 
Space group PT PT 
a(A) 10.1212(6) 9.404(1) 
b(/~) 12.412(1) 11.087(2) 
c(.A,) 14.194(2) 16.666 (1) 
ct(°) 65.514(9) 95.97(1) 
fl(°) 82.989(8) 104.603(9) 
7( ° ) 73.549(6) 106.86(1) 
V(A 3) 1556.3(3) 1579.5(4) 
z 2 2 
D(calcd)(g cm -3) 1.246 1.225 
/~(mm- ~) 1.748 0.971 
Radiation Mo-K,(2 = 0.71073 A) graphite monochrometer 
Temp(K) 298 298 
20 range (o) 2.0-44.0 3.0-44.0 
No. collected 3799 3851 
No. ind 3799 3851 
No. obsd 1528 (IFol >6¢1Fol) 2865(1Fo1 >6crlFol) 
Weighting scheme w-l = 0.04( i Fo i)2+cr(i Fol )2 W-I = O.04(iFol)2+a(iFol)2 
R 0.0512 0.0395 
R~ 0.0606 0.0441 
Largest diff peak (eA-3) 0.43 0.36 

models were refined using full-matrix least squares 
techniques. Ga, N, and O atoms were refined aniso- 
tropically for compound 2, while all non-hydrogen 
atoms were refined anisotropicatly for compound 3. 
Except for the hydroxide hydrogen, hydrogen atoms 
were included and constrained to "ride" upon the 
appropriate atoms [d(C--H) = 0.95 A, U(H) = 1.3 
Beq(C)]. The hydroxide hydrogen was located in the 
difference map, and its isotropic thermal parameter 
was allowed to "ride" upon that of O(1) [U(H) = 1.3 
Boq(O)]. All computations other than those specified 
were performed using MolEN [25]. A summary of cell 
parameters, data collection, and structure solution is 
given in Table 3. Scattering factors were taken from 
[26]. 
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